Jialin (Jayleen) Yuan

🖀 https://jia2lin3yua	n1.github.io/	
in linkedin.com/in/iialinvu	an 🖸 github.com/iia2lin3vuan1	🙆 vuanijal@oregonstate.edu

🖸 github.com/jia2lin3yuan1 🛛 @ yuanjial@oregonstate.edu 🛛 +1 (541) 602-4658

🞓 Education

Sep.2016 - EXP. Fall 2023	Oregon State University, Oregon, U.S
Sep.2010- Mar.2013	Xidian University, Xi'an, China
Sep.2006- Jun.2010	Xidian University, Xi'an, China

Ph.D student in Computer Science •Computer Vision M.S in Computer Science •Artificial Intelligence B.S. in Computer Application Technology

E Publications

- > an anonymous submission on Vision-Language understanding, submitted to WACV 2024
- > Maximal Cliques on Multi-Frame Proposal Graph for Unsupervised Video Object Segmentation, J.Yuan, J.Patravali, H.Nguyen, et al. arXiv 2023
- > Robust high-throughput phenotyping with deep segmentation enabled by a web-based annotator, **J.Yuan**, D.Kaur, Z.Zhou, et al. Plant Phenomics 2022
- > BATMAN : Bilateral Attention Transformer in Motion-Appearance Neighboring Space for Video Object Segmentation, Y.Yu, J.Yuan, G.Mittal, F.Li, M.Chen, ECCV 2022(Oral)
- > GWAS identifies candidate genes controlling adventitious rooting in Populus trichocarpa, M.Nagle, J.Yuan, et al., bioRxiv 2022
- > Deep Variational Instance Segmentation, J.Yuan, C.Chen, F.Li, NeurIPS 2020
- > Web-based Annotation tool for Image-based Phenotyping, J.Yuan, Z.Zhou, et al., CVPPP @ CVPR 2019
- > Multiple-Instance Video Segmentation with Sequence-Specific Object Proposals, A.Shaban, A.Firl, A.Humayun, J.Yuan, X.Wang, et al., The 2017 DAVIS Challenge on Video Object Segmentation-CVPR Workshops, 2017

Experience

Present Sep. 2016	 Graduate student Oregon State University, Corvallis, Oregon, U.S Research on Unsupervised Video Object Segmentation in the detect-propagate paradigm and achieved the best performance on DAVIS 2020 and state-of-art performance on YouTube-VIS 2019. Proposed a search-free Instance semantic Segmentation algorithm and developed an end-to-end DNN to predict the instance labels from an image in one step. Evaluated on Pascal VOC 2012 and MSCOCO 2017. Built perception system for the DARPA Machine Common Sense Project for discovering novel objects of interest from videos Led to develop high-throughput Phenotype method in collaboration with Forest researchers.
Jun. 2022 Mar. 2022	 Research Intern Microsoft Inc, Bellevue, Washington, U.S > Developed a Semi-supervised Video Object Segmentation algorithm built on motion-appearance space. Achieved state-of-art performance on DAVIS and YouTube-VOS benchmarks. > Developed a Vision-Language understanding algorithm to pre-train a transformer-based VL model using a large-size corpus and then adapt to different VL multimodal tasks and V/L unimodal tasks.
Sep. 2019 Jul. 2019	 Software Engineer Intern Uber Technology Inc, Palo Alto, California, U.S > Developed Image Style Transfer algorithm using Generative Adversarial Network, to augment the data in minor categories and address the data imbalanced problem. > Added the generated data to collected data and run a model for a vision-based research task, it obtained 8% improvement on the minor category without influencing the other categories.
Jun. 2016 Mar. 2014	 Algorithm Engineer Kiwi-image Technologies Co, Ltd., Shanghai, China > Developed algorithm for FRC(Frame Rate Conversion) and OD(Over Drive) used in High-end TV solutions and co-worked with Digital Designers for porting to RTL(Register Transfer Language). > Developed a phase-table algorithm and implemented it as a tool in C#, it improved the efficiency of the timing control analysis of the FRC module on FPGA and Chips over 10X.
Mar. 2014 Apr. 2013	 Algorithm Engineer Novatek Co, Ltd., Shanghai, China Maintained algorithm for 2d-to-3d, free-3d, and image compression used in TV solution. Created their bit-true C-models for RTL comparison and supported the development of embedded dynamic software used in Chip.

📑 Skills